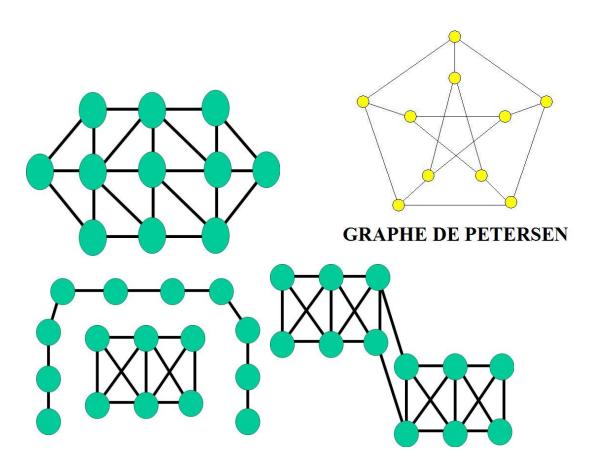
THEORIE DES GRAPHES TD N°6

Exercice 1 : Déterminer α et β , γ et q pour les 4 graphes suivants :



Exercice 2: Montrer que $\alpha(G) \le \theta(G)$

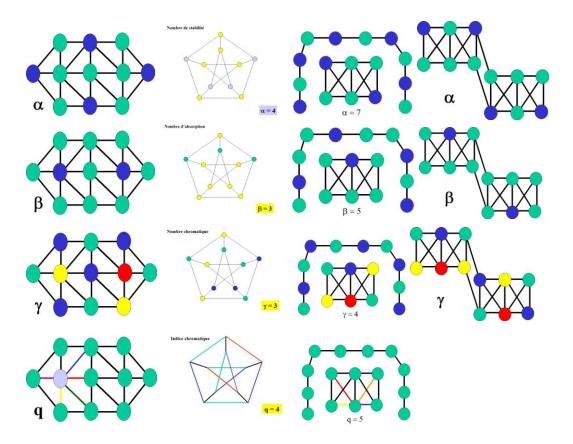
Exercice 3: Montrer que $\beta(G) \ge n-m$

Exercice 4: Montrer que $\gamma(G) \times \alpha(G) \ge n$

Exercice 5: Montrer que $\gamma(G) + \alpha(G) \le n+1$

CORRECTION

Exercice 1:



Exercice 2 : Montrer que $\alpha(G) \le \theta(G)$

Considérons une partition en θ cliques $C_1, C_2, \dots, C_{\theta}$ et un ensemble stable S.

Dans S, il ne peut y avoir 2 sommets appartenant au même $C_{\rm i}.$

Donc le cardinal de S est inférieur ou égal à θ .

C'est vrai pour tout ensemble stable, y compris pour un maximal de cardinal α , d'où la propriété.

Exercice 3 : Montrer que $\beta(G) \ge n-m$

Considérons A un ensemble absorbant minimal, donc de cardinal β .

Les sommets restants sont au nombre de $n-\beta$ et sont reliés aux sommes de A.

Il faut donc au moins $n-\beta$ arcs.

Exercice 4 : Montrer que $\gamma(G) \times \alpha(G) \ge n$

Considérons une coloration admissible en y couleurs et notons C_i l'ensemble des sommets de couleur i. Chaque C_i est un ensemble stable, et donc son cardinal est inférieur ou égal à α .

La réunion des C_i représente l'ensemble des sommets du graphe et les C_i sont 2 à 2 disjoints.

La somme des cardinaux des C_i et donc égale à n d'où la proposition.

Exercice 5: Montrer que $\gamma(G) + \alpha(G) \le n+1$

Soit S un ensemble stable maximal, donc de cardinal a. Les sommets restants sont donc au nombre de n-

Soit la coloration évidente suivante : tous les sommets de S avec 1 couleur et tous les autres chacun de couleur différente.

Cette coloration est, à l'évidence admissible et utilise $1 + (n-\alpha)$ couleurs ; ce nombre est donc supérieur ou égal à γ.